Re-evaluating the design life of buildings
Contents |
[edit] Introduction
Civil structures can typically have an intended ‘design life’ of up to 120 years. But, asks Structural Engineer Rifat Bin Ahmed, what does ‘design life’ mean? What if you were to reduce a structure’s design life down to one year? What design criteria could be relaxed? And could this save money?
[edit] What is design life?
Understanding the meaning of 'design life' and its influence over design decisions can help engineers optimise economies of scale.
It’s just like designing a phone case!
To explain my theory, I’d like to make a phone case analogy. If you were to design a phone case, you probably wouldn’t need it to be bullet-proof. But it is probably reasonable to design it to survive a drop from a height of 1.5m, which is the scenario the phone is likely to experience (slipping out of a hand when using the phone for example).
There is a spectrum of possible design qualities of phone cases, ranging from surviving meteor impact down to being broken by accident.
Likewise with buildings. Where your design lands on the spectrum depends on the engineer making sound discretionary decisions on a case-by-case basis. In a nutshell, ‘What is your structure designed to survive?'
[edit] Functionality and serviceability
A one-year structure is likely to be a temporary work with a fundamentally different design requirement compared to a permanent work. The one-year structure is most likely to have no permanent, serviceability requirements such as aesthetics, cracks and water tightness.
[edit] What the structure will go through?
Overall, the engineer needs to consider what scenarios the structure is likely to experience during its lifespan. What loadings is it required to resist? What environmental change is it likely to experience? What changes will the construction material experience over time?
Some loadings or risks only exist in the long term. For example, you may wish to design against the rise of sea levels for a marine structure. You may also choose to disregard a 100-years return earthquake period if you were to design a structure with a one-year design life, as it is unlikely to happen.
[edit] The ‘behavioural problem’ over the long term
Some construction materials exhibit time-dependent behaviour, such as creep and drying shrinkage of concrete. The effects from such behaviours only start to become significant in the long term. Creep and drying shrinkage of concrete depends on several factors including the ambient temperature, humidity and concrete strength.
Natural materials such as soil exhibit time-dependent behaviour too, including consolidation, stress relaxation and creep. Consolidation of soil is the drainage of pore water when the ground is being squeezed. If the ground is relatively impermeable, then the ground behaviour is closer to an ‘undrained’ condition rather than ‘drained’, as there is not enough time for pore water to escape under the pressure.
Stress relaxation is the ‘internalisation’ of the deformation of soil particles, i.e. some elastic deformation turns into plastic deformation. Creep is the slow and gradual increase of deformation when subject to the same loads over the long term.
[edit] Durability of different parts
Not all parts of the structure are born equal. Some auxiliary parts of the structure may have a much shorter design life compared to the main part of the structure.
For example, joint sealants may have a design life of 20 years. Bridge bearings may have a lifespan of 20 to 45 years. If the whole structure is designed to last for 120 years, the design may be required to eliminate the use of these or have a service plan to inspect and replace them. If the structure is designed for one year's use only, you may choose cheaper alternatives or simply ignore them if you can.
[edit] End-of-life considerations
Since the structure is intended to be used for one year only, the designer ought to take into consideration the imminent de-commissioning of the structure. Reusable materials with an ease of dismantling such as metals, rather than concrete, are more likely to be used to achieve economies of scale.
The consideration on de-commissioning would be a much less serious consideration for a 120-year structure as your guess on the state of available technology can be wildly off.
[edit] It’s all about the quality!
‘Quality’ here does not just mean workmanship - a trendy buzzword for ‘resilience’. How critical is the structure? What is the impact of structural failure?
Answering questions such as these will give you an indication on the risk tolerance and influence how much ‘resilience’ is required on the structure, which all translates into structure quality at the end of the day.
This article originally appeared on the ICE Community Blog on 13 July 2020. It was written by Rifat Bin Ahmed, Structural Engineer, Builtech Consulting Engineers.
--Institution of Civil Engineers
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Boiler Upgrade Scheme and certifications consultation
Summary of government consultation which closes 11 June 2025.
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
Places of Worship in Britain and Ireland, 1929-1990. Book review.
The emancipation of women in art.
CIOB Construction Manager of the Year 2025
Just one of the winners at the CIOB Awards 2025.
Call for independent National Grenfell oversight mechanism
MHCLG share findings of Building Safety Inquiry in letter to Secretary of State and Minister for Building Safety.
The Architectural Technology Awards
AT Awards now open for this the sixth decade of CIAT.
50th Golden anniversary ECA Edmundson awards
Deadline for submissions Friday 30 May 2025.
The benefits of precast, off-site foundation systems
Top ten benefits of this notable innovation.
Encouraging individuals to take action saving water at home, work, and in their communities.
Takes a community to support mental health and wellbeing
The why of becoming a Mental Health Instructor explained.
Mental health awareness week 13-18 May
The theme is communities, they can provide a sense of belonging, safety, support in hard times, and a sense purpose.
Mental health support on the rise but workers still struggling
CIOB Understanding Mental Health in the Built Environment 2025 shows.
Design and construction material libraries
Material, sample, product or detail libraries a key component of any architectural design practice.
Construction Products Reform Green Paper and Consultation
Still time to respond as consultation closes on 21 May 2025.
Resilient façade systems for smog reduction in Shanghai
A technical approach using computer simulation and analysis of solar radiation, wind patterns, and ventilation.